

ZESSTを成した「種」

almatech

13年にわたる実績と信頼

宇宙・船舶エンジニアリング

2009年設立

従業員30名

エンジニア90%

PhD (博士号取得者) 40% 軌道上の宇宙衛星システム10 基に技術を提供 主な顧客:

Honeywell

Together ahead. RUAG

開発の背景

モビリティが排出する8.7GtのCO2 = 全世界の排出量の23%を占める →今後28年1でゼロに!

道路のモビリティは飽和・渋滞

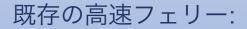
水上移動・輸送が新たなモビリティ・ハブとなる:

- 移動距離を75%短縮2
- 移動時間を50分2短縮²

ジュネーブ・レマン湖 南仏コートダジュール

神戸・大阪

オスロ



ストックホルム

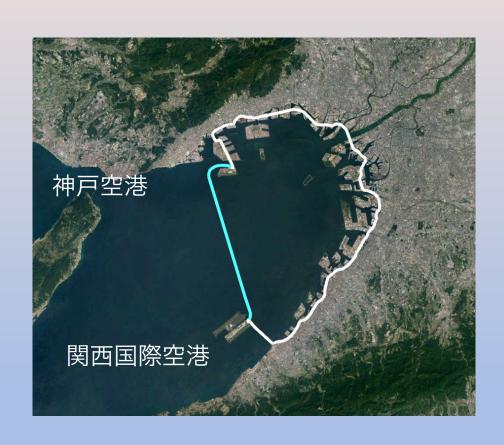
ニューヨーク

大量のCO2排出、化石燃料に依存、騒音や波が立つ、IMO規制の強化に 対応できない。

zesst

- 1. IPCC (気候変動に関する政府間パネル) 第6次報告書 第3作業部会、Ch10、2021年11月
- 2. ジュネーブ湖のローザンヌ-トノンレバンの航路の場合、船なら19km、道路は78km。

スイスの活用例 自動車に比べ年間1万トンのCO2を削減


	自動車	高速フェリー	ZESST
距離	78 km	19 km -75%	19 km -75%
時間	1h 20'	27' (-53')	27' (-53')
動作時のCO2排出量 ¹	10'000 トン	4'300トン -57%	0トン-100%

¹¹日27回、1年365日稼働の場合

日本の活用例

ZESSTは自動車に比べ年間6,700トンのCO2を削減

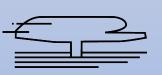
	自動車	高速フェリー	ZESST
距離	74.5 km	26 km -65%	26 km -65%
時間	1h 04'	31' (-33')	31' (-33')
動作時のCO2排出量 ¹	6'700トン	6'100 トン -9%	0トン-100%

¹¹日20回、1年365日稼働の場合

新規制に 対応

スマート シップ

MaaS ネットワーク に接続

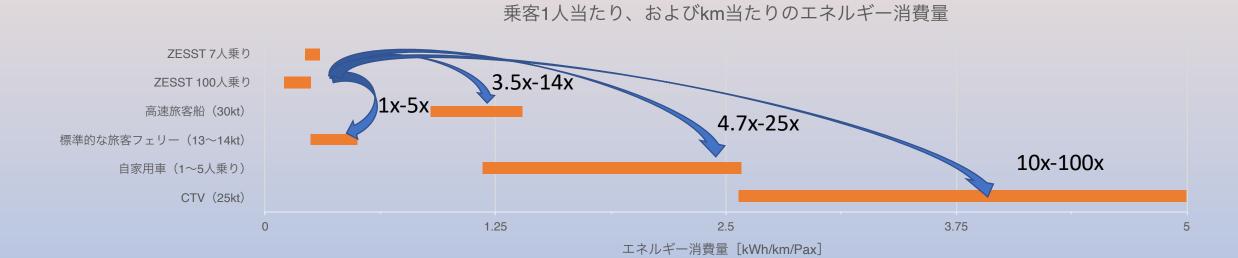

85%の 燃料削減

快適で静か

水素燃料

波が立たない

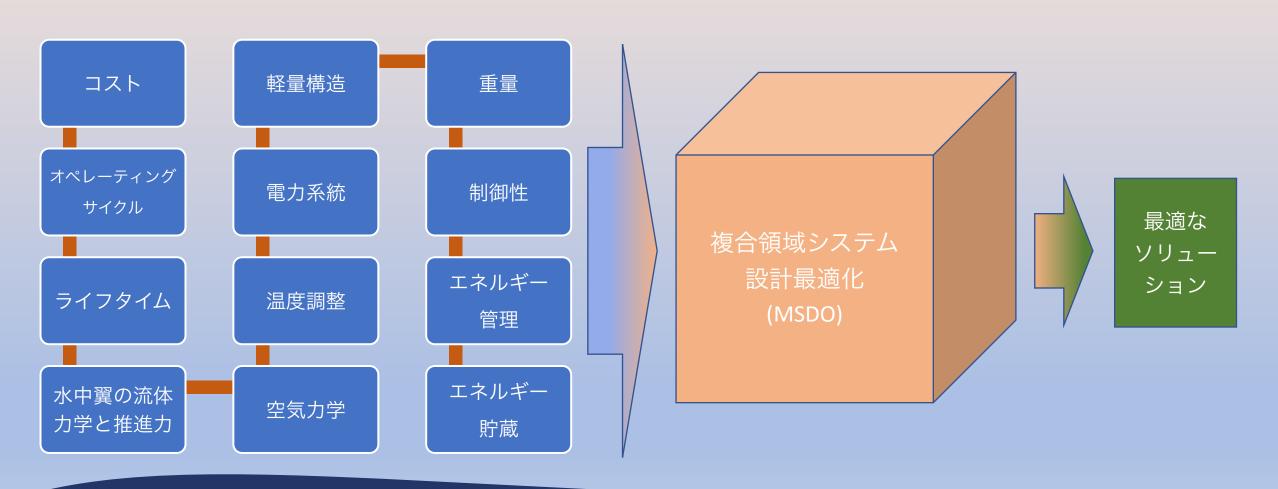
高速 50 km/h



	既存船				プロジェクト	
					0	
名称	Navibus	Jet Foil	Nemo H2	Sea Change	Aero 25	ZESST 100
構造	単胴船	単胴型フォイラー	単胴船	双胴船	双胴船	双胴型フォイラー
席数	99	190	87	84	98	100
速度	50 km/h	80 km/h	16 km/h	37 km/h	48 km/h	50 km/h
燃料	ディーゼル	ディーゼル	H2 + バッテリー	H2 + バッテリー	バッテリー	H2 + バッテリー
CO2 排出量 ¹	2'570 トン	4'150 トン	0	0	0	0
エネルギー効率	1 kWh/乗客/km	1.5 kWh/乗客/km	~0.1 kWh/乗客/km	~0.5 kWh/乗客/km	~0.5 kWh/乗客/km	0.15 kWh/乗客/km
波	立つ	立たない	立たない	立つ	立つ	立たない
静かさ	騒音	騒音	静か	静か	静か	静か
快適さ	波で揺れる	スムース	波で揺れる	波で揺れる	波で揺れる	スムース

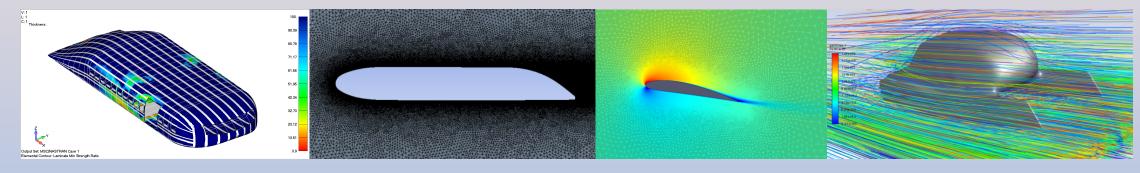
¹ 8,000,000km.乗客/年を想定

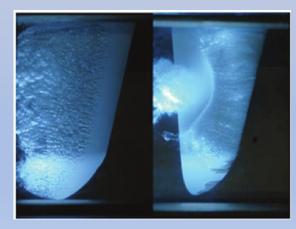
水中翼船は、従来の高速フェリーに比して85%のエネルギー削減を可能とする


年間最大6,100トンのCO2を削減可能1

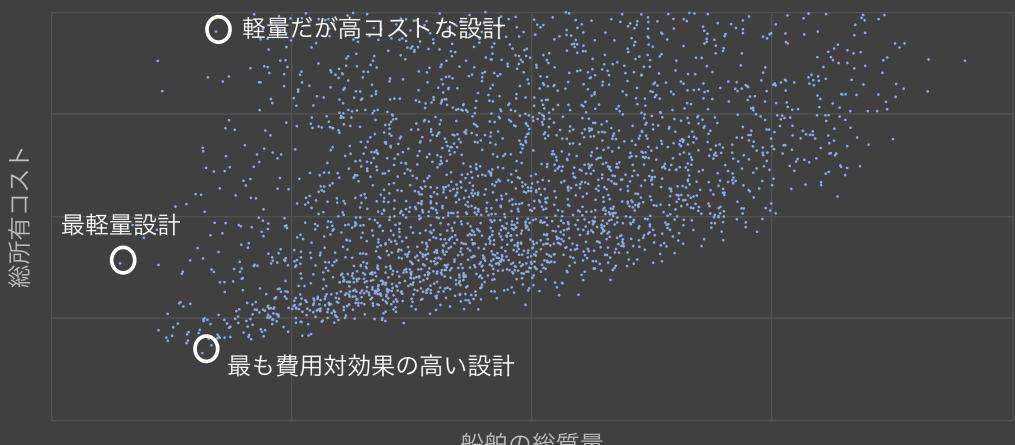
1 関空-神戸空港 100人乗りシャトル、1日20便、1年365日、既存の高速艇と比較

ZESST=エネルギー効率、ゼロエミッション、収益性を兼ね備えた経済モデル エコロジー エコノミー テクノロジー zesst 🗗 Zesst T by almatech www.zesst.ch - Copyright 2022 Almatech - All Rights Reserved in f @

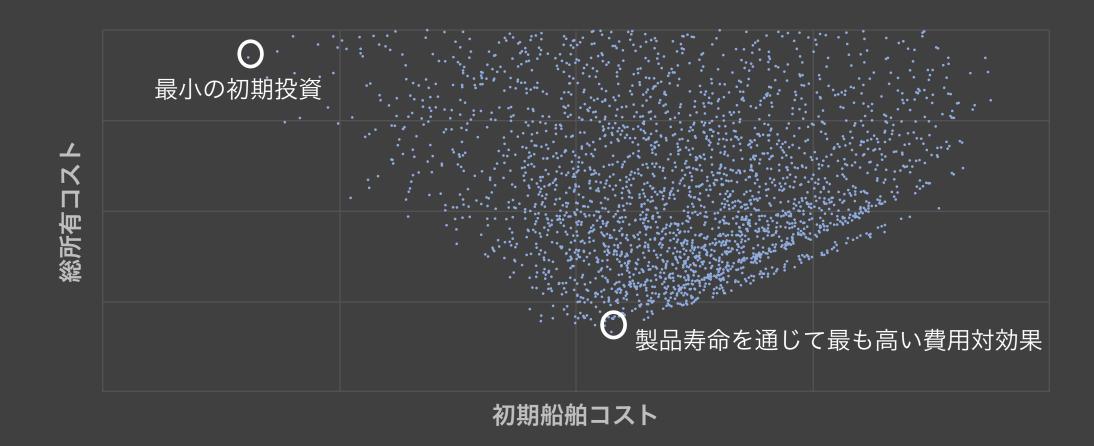

宇宙工学の技術をイノベーションに活用


現実的な数字を出すためには詳細な分析が必要

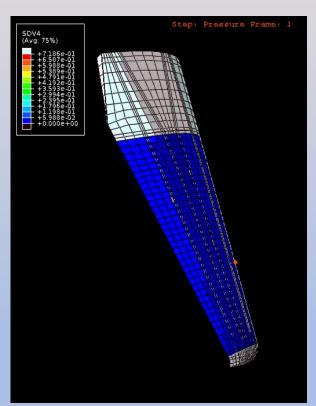
総所有コスト = 初期設備投資額+金融費用+メンテナンス費用+燃料費

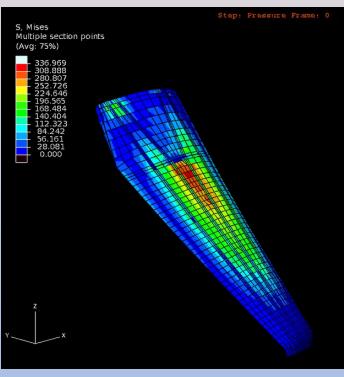


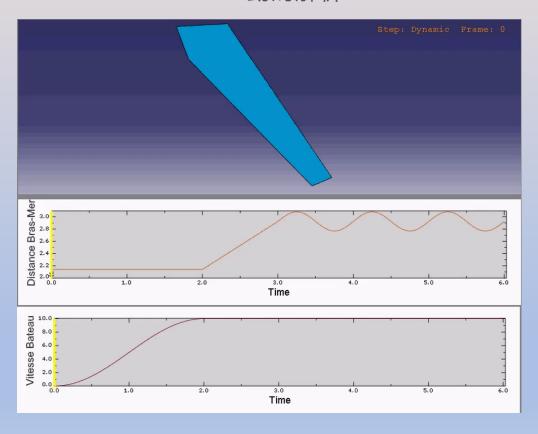
有限要素法計算による構造モデル CFD(数値流体力学)計算による流体力学 モデル 曳航水槽、キャビテーション水槽試験


最軽量設計は、必ずしも最もコスト効率の良いソリューションではない

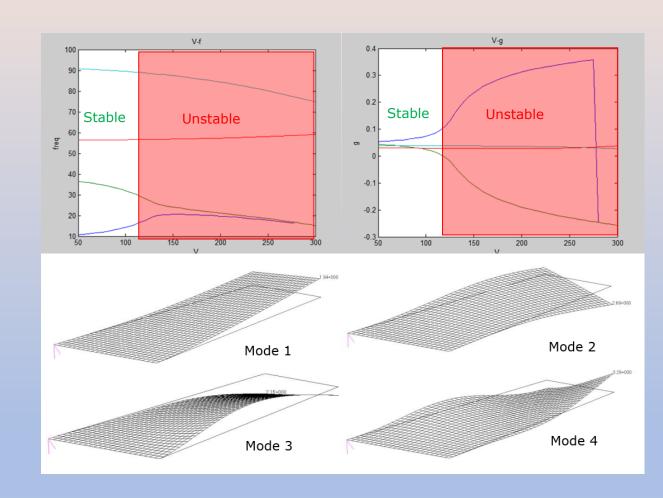
船舶の総質量


製品寿命を通じて最も高い費用対効果を得るには、高い初期投資が必要




水中翼のモデリング

静的解析


動的解析

動的不安定性解析 - フラッター

飛行の歴史に残るマイルストーン ドリデン飛行研究センター PA-30ツインコマンチ テールフラッター試験 1966年4月5日

日本市場参入の歩み

2021年5月 - アルマテックは、日本最大の海事プラットフォームビルダー**e5ラボ**とZESSTの日本における普及・商品化に関するパートナーシップを締結

左からスイス大使館マルクス・ロイビ臨時代理大使、*e5*ラボ*CTO*末次氏、 *CEO*一田氏、アルマテック*Blecha*(*ZESST*代表)、*Cottard*(*CEO*)、 白石興二郎在スイス日本国大使

- 2021年2月:日本市場調査
- **2021年5月**: 在日スイス大使館およびスイス連邦工科大学 ローザンヌ校にて、**アルマテック/e5ラボ**のパートナーシップ提携調印式を行う。**NHK**など主要メディアが報道。
- **2021年11月**: 日本に**ZESST**の常駐代表者、三崎由美子を 派遣し、東京から**関西**へ拠点を移転する。

■ 2022年:

- 神戸市・兵庫県共創プログラムSDG Challenge採択
- 大阪市Osaka Global Innovation Forum採択
- ホンダ、トヨタ、商船三井、川崎重工など、日本の 日本のテクノロジーリーダーと商談を進める

Almatech SA

Space & Naval Engineering

Almatech SA

EPFL Innovation Park D

1015 Lausanne - Suisse


zesst@almatech.ch

T. +41 21 555 3004

www.almatech.ch

www.zesst.ch

- スイス初の宇宙望遠 鏡を開発
- 航海最高速度記録95 km/hを樹立
- ・ 名高い取引先・パー トナー

Honeywell

www.zesst.ch - Copyright 2022 Almatech - All Rights Reserved in f @

